
May 1999 The Delphi Magazine 65

The Delphi
CLINIC

Edited by Brian Long

Problems with your Delphi project?

Just email Brian Long, our Delphi
Clinic Editor, on clinic@blong.com

GUID Equality

QI have two TGuid variables in
a COM application and am

trying to compare them to see if
they are the same. I thought GUIDs
were strings, so why won’t Delphi
let me do a simple comparison?

AGlobally Unique IDentifiers,
or GUIDs, are represented in

one of two ways, either as a string
or as a TGuid record. The TGuid re-
cord is defined in the Ole2unit of all
32-bit versions of Delphi and also in
the System unit of Delphi 3 and 4. It
looks like this:

type
PGUID = ^TGUID;
TGUID = record
D1: Integer;
D2: Word;
D3: Word;
D4: array[0..7] of Byte;

end;

So a GUID is actually a 16 byte, or
128 bit, number used to uniquely
identify a COM class, interface or
type library. But because of the
inherent inconvenience of working
with the record structure above,
there is a standard alternative
textual representation. You can
translate between a string and a
TGuid record using the GUIDTo
String and StringToGUID functions
from the ComObj unit in Delphi 3 and
4, or ClassIDToString and StringTo
ClassID from Delphi 2’s OleAuto
unit.

In most development tools, it is
down to the programmer to trans-
late between the two, but Delphi
does its usual trick of stepping in
and doing stuff for you. What this
means is that instead of defining
some TGuid constant in this
cumbersome manner:

const
AGuid: TGuid =
(D1: $2835826F;
D2: $7E60;
D3: $11D0;
D4: ($9F, $EA, $A4, $2B,

$0, $C1, $0, $0));

you can simplify matters like this:

const
AGuid: TGuid =
‘{2835826F-7E60-11D0-9FEA-A42B00C10000}’;

Despite what it looks like, this does
not set a TGuid constant to a string
value. Instead, Delphi calls String
ToGUID on your behalf (or maybe
the underlying API CLSIDFrom
String) and sets the constant to
the resulting GUID record. So, now
that we know that GUIDs are 16
byte numbers, not strings, the cor-
rect form of comparison can be
ascertained. Since Delphi cannot
compare two records for equality,
you could use a call to CompareMem,

to verify the data in the two
records are the same. Alterna-
tively you can use a dedicated API
for the job, declared in the ActiveX
unit. Listing 1 shows a couple of
snippets from that unit. The
IsEqualGUID API is made available
under three different names:
IsEqualGUID, IsEqualIID and
IsEqualCLSID.

TStringLists And Files

QI wanted to use a TStringList
and use its LoadFromFile

method to read from disk, but it
does not read the entire file,
stopping about halfway. Even on
smaller files (400 lines) it only
reads about 250 lines. Is this my
problem or a Delphi 4 bug? I have
checked that there are no DOS
end-of-file markers (ASCII
character 27) in the file. The an-
noying part is that I can read the
file manually, using ReadLn, with no
problems.

function IsEqualGUID(const guid1, guid2: TGUID): Boolean; stdcall;
function IsEqualIID(const iid1, iid2: TIID): Boolean; stdcall;
function IsEqualCLSID(const clsid1, clsid2: TCLSID): Boolean; stdcall;
…
implementation
…
function IsEqualGUID; external ole32 name 'IsEqualGUID';
function IsEqualIID; external ole32 name 'IsEqualGUID';
function IsEqualCLSID; external ole32 name 'IsEqualGUID';

procedure TStrings.SetTextStr(const Value: string);
var
P, Start: PChar;
S: string;

begin
BeginUpdate;
try
Clear;
P := Pointer(Value);
if P <> nil then
while P^ <> #0 do begin
Start := P;
while not (P^ in [#0, #10, #13]) do Inc(P);
SetString(S, Start, P - Start);
Add(S);
if P^ = #13 then Inc(P);
if P^ = #10 then Inc(P);

end;
finally
EndUpdate;

end;
end;

➤ Above: Listing 1, ActiveX unit. ➤ Below: Listing 2

66 The Delphi Magazine Issue 45

AYour files probably have
character #0 in the last line

successfully read. Unfortunately,
because of the way the TStringList
class works, it stops on character
#0 . The relevant VCL code is in
Listing 2. Notice the loop that stops
when #0 is encountered.

You’ll have to do it manually, I
reckon. Maybe call the BeginUpdate
method of your string list, then do
a loop with ReadLns and Adds, fol-
lowed at the end by an EndUpdate
call, as shown in Listing 3. Unfortu-
nately, though, in Delphi 1 this will
only read lines up to 255
characters in length.

CORBA Limitation?

QMy understanding (from
previous experience) is that

when writing CORBA objects, you
first define the object using the
CORBA Interface Definition Lan-
guage (IDL). People who wish to
use your CORBA objects then take
the IDL file and pass it to an appro-
priate translator which generates
basic stub and skeleton classes in
the syntax of the development tool
you are using. These classes can
then be used in applications to
represent the CORBA objects that
may be elsewhere on the network,
possibly written in various other

procedure ReadIntoStrings(List: TStrings; const FileName: TFileName);
var
TF: TextFile;
S: String;

begin
List.BeginUpdate;
try
AssignFile(TF, FileName);
Reset(TF);
try
while not EOF(TF) do begin
ReadLn(TF, S);
List.Add(S)

end
finally
CloseFile(TF)

end
finally
List.EndUpdate

end
end;

module Server
{
interface ITest
{
double Get_DateAndTime();

};

interface TestFactory
{
ITest CreateInstance(in string InstanceName);

};
};

➤ Above: Listing 3 ➤ Below: Listing 4

languages. Where is the IDL to
Delphi translation tool?

ABob Swart started getting
into the ins and outs of

CORBA in Issue 43, and briefly
talked about CORBA stub and
skeleton classes in Delphi, so you
might like to refer to that article for
some background information
[And the article in this issue too. Ed].

The CORBA support offered by
Delphi 4 is incomplete with regard
to using CORBA objects written in
other languages. In short, it does
not come equipped with an
IDL2PAS tool. This is in contrast to
C++Builder 4, which is supplied
with IDL2CPP.EXE. But, more gen-
erally, the CORBA support is inher-
ently limited. Inprise supply
VisiBroker for C++ (as delivered in
C++Builder 4) and VisiBroker for
Java. There is no VisiBroker for
Delphi yet. Delphi comes with
VisiBroker for C++ with a wrapper
DLL (ORBPAS.DLL).

When writing CORBA server
objects in Delphi, you typically use
the type library editor (but you can
use the Add To Interface... option
available on the Edit menu, or the
editor’s context menu, when
looking at the CORBA object class).
The type library editor is more
than capable of generating an IDL

file to represent what you have
developed, using the Export
button. By default it will write out a
file conforming to Microsoft’s vari-
ant of the language, but the
dropdown list next to the button
allows you to manufacture a
CORBA IDL file. It also happily
generates the stub-and-skeleton
unit, containing CORBA stub and
skeleton classes.

However, there is no given sup-
port for taking an arbitrary IDL file
and turning that into stub and skel-
eton classes. The Delphi 4 Devel-
oper’s Guide has something to say
on this in Chapter 27. The section
entitled Using stubs says the follow-
ing, which you can also find in the
Delphi 4 help by looking up
CORBA, stubs then choosing Using
stubs from the list:

‘If you are writing a client for a
CORBA server that was not written
using Delphi, you must write your
own descendant of TCorbaStub to
provide marshalling support for
your client. You must then register
this stub class with the global
CORBAStubManager. Finally, to
instantiate the stub class and get
the server interface, you can call
the global BindStub procedure to
obtain an interface which you then
pass to the CORBA stub manager’s
CreateStub method.’

So the bottom line is this. If you
want to have a stub class to use in
order to access the server object,
it is currently down to you to do
this, following the brief guidelines
mentioned above. So how does
this procedure work? Well, if you
try to follow the help directly you
wouldn’t get too far. Unfortu-
nately, the BindStub procedure
requires a parameter with a type of
IOrb, and the relevant value is kept
tucked away in the private section
of a TOrb object. This isn’t the end
of the world, though, there is a rou-
tine called CorbaFactoryCreateStub
that calls BindStub and CreateStub
for you. Bearing this in mind, let’s
press on.

For an example, I wrote a simple
CORBA server in Delphi 4
(Server.Dpr) and exported the IDL
file (Server.Idl in Listing 4). At this
point I have a compiled CORBA
executable with the appropriate

68 The Delphi Magazine Issue 45

IDL file, and will pretend that the
CORBA server was written in some
other language, to match the
question.

The prime object in the server
implements an interface called
ITest with one method Get_Date
AndTime which returns a double. In
fact, when I defined the interface in
Delphi’s type library editor, I made
a read-only property called Date
AndTime, defined to be a TDateTime,
but CORBA does not understand
properties or TDateTime types.

The way a Delphi-built CORBA
server operates is that the main
CORBA object does not exist by
default. When a client application
wants to talk to the object, it does
so via a factory object which is
always up and running. The factory
object implements an interface
called TestFactory, with a method
called CreateInstance whose job is
to create an instance of the object
that implements ITest.

So in fact there are two CORBA
objects in a Delphi CORBA server.
The factory that always exists, and
the real object that gets created by
the factory object. Sometimes,
CORBA servers will dispense with
the factory idea and have the main
object directly available. You
should take this into consideration
when trying to talk to objects writ-
ten in other languages, but note
that Delphi always uses factory
objects and generates appropriate
support code in the stub/skeleton
unit (the ProjectName_TLB file).

On the disk are supplied three
versions of a client application,
showing different ways to access
the server object, working from the

IDL file and developing some rules
along the way.

Firstly, we will try and develop a
stub unit that mimics, to a certain
extent, the normal stub-and-
skeleton unit generated via the
type library editor. So, the steps
are as follows.

First, make a new unit and save it
under a suitable name,
(Server_Stub.Pas in my case). Next
add CorbaObj and OrbPas into the
uses clause of the interface part of
the unit.

Now define interface types to
represent the main interfaces from
the IDL file. If you wish, you can add
in any properties that you feel the
IDL file is missing into the interface
type. Listing 5 defines a corre-
sponding interface called ITest
with an extra property.

Define descendants from
TCorbaStub that can do the appro-
priate marshalling of data from the
client to the server, and back again.
You can get a good idea of how this
code should look by mocking up a
CORBA object in Delphi that mir-
rors the one you are trying to ac-
cess (in its methods and
properties) and looking at the
stub-and-skeleton unit so gener-
ated. The prime difference is that
you should use TCorbaStub,
whereas Delphi will use TCorba
DispatchStub. Have a look at
TTestStub in Listing 5, in particular
the implementation of Get_Date
AndTime. You will find it is not dis-
similar to the stub class that is part
of the server project on the disk
subdirectory.

The stub classes must be regis-
tered with the CorbaStubManager
variable in the initialisation
section of the unit. The interfaces

should be registered with the
CorbaInterfaceIDManager variable
in the initialisation section of the
unit. In truth, this step may not be
required for your particular appli-
cation, but we will include it in the
steps.

Now define utility classes to act
as local representations of each
CORBA class factory. The TTest
CorbaFactory class in Listing 5 has
a CreateInstance class method that
calls the aforementioned Corba
FactoryCreateStub routine to con-
nect to the factory and get an in-
stance of the desired CORBA
object. This requires you to know
the Repository ID of the factory
class (which is ’IDL:Server/
TestFactory:1.0’ in my case). If
you look carefully at the one used
in Listing 5, you can see that it is
fairly straightforward, if a little
lengthy. Alternatively, you can run
a copy of the server application
and then run the VisiBroker Smart
Finder, which will locate all CORBA
objects running under the
VisiBroker ORB, displaying their
Repository IDs.

At this point, you can access
your target CORBA server in
exactly the same way as you would
with any Delphi-written CORBA
server. I’ll grant you that the server
used in this example was originally
written in Delphi, but I was
pretending that it wasn’t J. The
project Client.Dpr talks to the
server using the code shown in
Listing 6.

That’s one out of the way. Let’s
try another approach now. This
time, the list of steps is a little dif-
ferent. The primary issue is to con-
sider the factory object as a
standard CORBA object and to

unit Server_Stub;
interface
uses
CorbaObj, OrbPas;

type
ITest = interface
['{1E4B84EE-D627-11D2-96EC-0060978E1359}']
function Get_DateAndTime: TDateTime;

end;
TTestStub = class(TCorbaStub, ITest)
function Get_DateAndTime: TDateTime;

end;
TTestCorbaFactory = class
class function CreateInstance(const InstanceName:

String): ITest;
end;

implementation
function TTestStub.Get_DateAndTime: TDateTime;
var

OutBuf: IMarshalOutBuffer;
InBuf: IMarshalInBuffer;

begin;
FStub.CreateRequest('Get_DateAndTime', True, OutBuf);
FStub.Invoke(OutBuf, InBuf);
Result := InBuf.GetDouble;

end;
class function TTestCorbaFactory.CreateInstance(
const InstanceName: String): ITest;

begin
Result := CorbaFactoryCreateStub(
'IDL:Server/TestFactory:1.0', 'Test', InstanceName, '',
ITest) as ITest

end;
initialization
CorbaStubManager.RegisterStub(ITest, TTestStub);
CorbaInterfaceIDManager.RegisterInterface(ITest,

'IDL:Server/TestFactory:1.0');
end.

➤ Listing 5

May 1999 The Delphi Magazine 69

define an interface and stub class
for it.

So, make a new unit and save it as
a suitable name (Server_Stub2.Pas
in my case). Add CorbaObj and
OrbPas into the uses clause of the
interface part of the unit.

Now define interface types to
represent all the interfaces from
the IDL file, including the factory
interfaces. Listing 7 from
Client2.Dpr defines interfaces
called ITest and ITestFactory. De-
fine descendants from TCorbaStub
that can do the appropriate mar-
shalling of data from the client to
the server, and back again, one per
defined interface. Listing 7 has
TTestStub and TFactoryStub.

The stub classes must be regis-
tered with the CorbaStubManager
variable in the initialisation
section of the unit.

The defined interfaces should be
registered with the Corba
InterfaceIDManager variable in the
initialisation section of the unit.
Again, not all the interfaces may
need registering, but it is easiest to
do all of them.

Since Inprise have not supplied
an IDL2PAS converter, you can do
it yourself as I have described
above, which is a little tedious.
However, an alternative exists on
the internet. An enterprising devel-
oper called Kevin Smith has
written his own version of IDL2PAS
which can be located at:

www.sotainter.net/users/krsmes/
corba/idl2pas.zip

uses Server_Stub;
…
Server: ITest;
…
Server := TTestCorbaFactory.CreateInstance('');
Label1.Caption := DateTimeToStr(Server.Get_DateAndTime);

unit Server_Stub2;
interface
uses CorbaObj, OrbPas;
type
ITest = interface
['{6B0BEBC1-40B4-11D2-8684-0020182CD6A0}']
function Get_DateAndTime: TDateTime;

end;
TTestStub = class(TCorbaStub, ITest)
function Get_DateAndTime: TDateTime;

end;
ITestFactory = interface
['{2270CD21-D63E-11D2-96EC-0060978E1359}']
function CreateInstance(const InstanceName: String):
ITest;

end;
TTestFactoryStub = class(TCorbaStub, ITestFactory)
function CreateInstance(const InstanceName: String):
ITest;

end;
implementation
function TTestStub.Get_DateAndTime: TDateTime;
var
OutBuf: IMarshalOutBuffer;
InBuf: IMarshalInBuffer;

begin;
FStub.CreateRequest('Get_DateAndTime', True, OutBuf);
FStub.Invoke(OutBuf, InBuf);
Result := InBuf.GetDouble;

end;
function TTestFactoryStub.CreateInstance(const InstanceName:
String): ITest;

var
OutBuf: IMarshalOutBuffer;
InBuf: IMarshalInBuffer;

begin;
FStub.CreateRequest('CreateInstance', True, OutBuf);
OutBuf.PutText(PChar(InstanceName));
FStub.Invoke(OutBuf, InBuf);
Result := UnmarshalObject(InBuf, ITest) as ITest;

end;
initialization
CorbaStubManager.RegisterStub(ITest, TTestStub);
CorbaInterfaceIDManager.RegisterInterface(ITest,
'IDL:Server/Test:1.0');

CorbaStubManager.RegisterStub(ITestFactory,
TTestFactoryStub);

CorbaInterfaceIDManager.RegisterInterface(
ITestFactory, 'IDL:Server/TestFactory:1.0');

end.

➤ Listing 7

➤ Listing 6
This is a good intermediate solu-
tion until Borland supply an official
tool. Such a tool may arrive in
Delphi 5: various Inprise people
have been seen strongly suggest-
ing this fact in online internet chat
sessions.

Another part of the Delphi 4
Developer’s Guide in the section
called Writing CORBA clients,
which is in the help if you look up
CORBA clients, says:

‘You may want to use dynamic
binding when writing CORBA cli-
ents for servers that are not writ-
ten in Delphi. This way, you do not
need to write your own stub class
for marshalling interface calls.’

This is referring to the Dynamic
Invocation Interface, or DII. This
allows you to access a CORBA
server object using late binding,
and so you find out only at runtime
if you spelt the method names
correctly. Using interfaces and
stub classes allows early bound
access to the object and com-
pile-time verification that what you
are calling is correct.

This situation very much paral-
lels the two ways of accessing a
COM Automation object. You can
use a Variant for late bound Auto-
mation, or use the interfaces in the
type library import unit for early
bound Automation.

For DII to work, the IDL file
must be present in an Interface

Repository that is running when
the client attempts to access the
server object. To lodge an IDL file
in an interface repository, use the
IREP tool, which can be launched
as a console or GUI application.
Something like this should do the
job:

IRep -console MyRepository
Server.Idl

Once the IDL file is in the reposi-
tory, you can proceed. Again, my
example server has a factory
object that is always running, and
is used to get an instance of the
target CORBA object. Since this
approach relies on no interface
types being available, we repre-
sent both the server and factory
objects using a variable of type
TAny. This type is defined in the
CorbaObj unit as a Variant, and
operates similarly to a Variant in
COM Automation.

To access the factory object,
you call CorbaBind, passing the
interface repository along.
Assuming this succeeds, you can
then call the factory method
CreateInstance through the TAny
variable and it will return a new
TAny variable that you can store in
the Server variable. So Listing 6
now turns into Listing 8.

70 The Delphi Magazine Issue 45

CORBA And DUN

QI sometimes run CORBA
client applications on a lap-

top, when it is plugged into the net-
work. The laptop runs Windows 95
and has a modem, which is ac-
cessed through Windows 95
Dial-Up Networking (DUN). The
problem I get is that whenever my
programs are locating a remote
object, the modal dial-up network-
ing connection dialog pops up. My
program hangs until I cancel the
dialog and clearly this requires
user interaction. Can I stop the
dialog popping up in the first
place?

AI have encountered the same
problem myself when I

started looking at CORBA last year.
In brief, I found the cause of the
problem, and came up with what I
felt was an adequate solution.

If the Windows AutoDial facility
is enabled, the dialog will pop up
when your CORBA client does
some type of network search
(excuse the lack of technicality
here, networking is not my forté).
My approach to the problem is to
have a look at the corresponding
registry setting and see if AutoDial
is enabled. If it is, I disable it, but
just temporarily. Then the CORBA
subsystem can be initialised and

uses CorbaObj;
…
Factory: TAny;
Server: TAny;
…
Factory := CorbaBind('IDL:Server/TestFactory:1.0');
Server := Factory.CreateInstance('');
Label1.Caption := DateTimeToStr(Server.Get_DateAndTime);

the setting can be restored if it was
changed.

The three CORBA client projects
on the disk include a self-contained
unit called NoDUNBox.Pas that
helps eliminate this problem. Just
add it to your CORBA client pro-
jects and hopefully the problem
should disappear. You can see the
important parts of the code in
Listing 9.

Before leaving the discussion of
CORBA applications on laptop
machines, it should be noted that
CORBA needs an active TCP/IP
stack to operate correctly. If you
remove a laptop’s network card,
the chances are that your server
applications will no longer start,
due to the lack of a TCP/IP stack. If
you have a modem on the machine,
you can set an active stack as
follows.

Go to the Network Properties
dialog, and modify the TCP/IP
settings for your Dial-Up Adapter.
The idea is to ensure that the Spec-
ify an IP address: radio button is
selected, and to give yourself an IP
address. This will allow the various
required network messages to
work. Of course you will need to

➤ Listing 8

remember to reset the option
before dialling out to your ISP, but
so far this is the best I can offer.

One final comment to make is
that TCP/IP is definitely required
for VisiBroker applications. Make
sure you set it up well. This
includes adding entries into the
HOSTS file, which is somewhere in
your Windows directory tree, that
describe the names and IP
addresses of the machines that are
typically found on your local net-
work, and are frequently accessed
by CORBA clients talking to
CORBA servers.

Paradox Update
The Issue 42 article Paradox File
Corruption has now been updated
thanks to several readers who
pointed out that my application
had a few small errors. The article
documented various registry
entries as DWord values, but the
program entered them as binary
values, which has a tendency to
upset Windows NT and cause
entries to be added into the system
log mentioning that they are of the
wrong type. The article has now
been updated (with the source)
and is at www.itecuk.com/delmag
in the What’s New area.

NT Service Wizard Update
In Issue 43’s Clinic, in Delphi 4 Dis-
service, I referred you to a 3rd party
NT Service wizard written by Jeff
Overcash that can be used in
Delphi 4 Professional. An official
version of this wizard has now
been released and can be found at

www.borland.com/
devsupport/bcppbuilder/
file_supplements.html

which works with both Delphi 4
Professional and C++Builder 4
Professional. Thanks to Wyatt
Wong for this information.

uses Registry, CorbaObj;
const
Path = 'Software\Microsoft\Windows\CurrentVersion\Internet Settings';
EnableAutoDial = 'EnableAutoDial';
DisableIt: Longint = 0;

var
EnableIt: Longint;
ChangeIt: Boolean;

initialization
//We're gonna play with the registry
with TRegistry.Create() do
try
//Flag for later on
ChangeIt := False;
//Do we have these Internet settings?
if OpenKey(Path, False) then begin
//Check the AutoConnect option
ReadBinaryData(EnableAutoDial, EnableIt, SizeOf(EnableIt));
//If it is on, we will turn it off
ChangeIt := EnableIt <> DisableIt;
if ChangeIt then
WriteBinaryData(EnableAutoDial, DisableIt, SizeOf(DisableIt));

end;
//We call this now to prevent a minor delay later on
//when CORBA stuff actually happens, but primarily so we
//can prevent the Dial-Up Networking box if necessary
CorbaInitialize;
//If we changed something, put it back to how it was
if ChangeIt then
WriteBinaryData(EnableAutoDial, EnableIt, SizeOf(EnableIt))

finally
Free

end
end.

➤ Listing 9

72 The Delphi Magazine Issue 45

Long Filename Update
In Issue 44's Clinic, Listing 7 used
SHGetFileInfo with a SHGFI_
DISPLAYNAME parameter to translate
from a short file name to a long file-
name. As Ian Carter pointed out to
me, the SHGFI_DISPLAYNAME flag gets
exactly that: a display name. If the
user has the Hide MS-DOS file exten-
sions for file types that are registered
option set in Windows Explorer,
the display name returned by
SHGetFileInfo will not contain an
extension for various file types.
This will cause problems if the
resultant pathname is passed to a
routine like ShellExecute, which
will not be able to find the file.

Acknowledgments
Thanks are due to Inprise’s Steve
Axtell for some TCP/IP tips
mentioned this month and also to
Bob Swart for some CORBA-related
comments.

Update: Tooltips Under Your Control
After publishing the Tooltips Under Your Control article in Issue 43, a
reader sent me a mail asking if it was possible to have a tooltip be dis-
played when the mouse moves over a memo field. Of course in a
DBGrid, memos normally display as (MEMO) but the request was for
the tooltip to display the contents of the memo field. This seems to be
a very simple change in Delphi 4: if the field is a memo, extract the
AsString property of the field instead of the DisplayText property.
Unfortunately with Delphi 1, 2 and 3, they all seem to have different
problems with this simple request. For example, in Delphi 1 a
TMemoField’s AsString property extracts (MEMO) instead of the real
memo contents, and also Delphi 1 strings can only be 255 characters in
length. So, having checked into the problem with each version, I now
have a new version of the code that works as requested. Another
sample project called NewHints.Dpr is supplied on this month’s disk
(along with the modified component unit), and it is shown running in
the screen shot below.

	GUID Equality
	TStringLists And Files
	CORBA Limitation?
	CORBA And DUN
	Paradox Update
	NT Service Wizard Update
	Long Filename Update
	Acknowledgments
	Update: Tooltips Under Your Control

